2 resultados para highly active antiretroviral therapy (HAART)

em Université Laval Mémoires et thèses électroniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les lacs de thermokarst (lacs peu profonds créés par le dégel et l’érosion du pergélisol riche en glace) sont un type unique d’écosystèmes aquatiques reconnus comme étant de grands émetteurs de gaz à effet de serre vers l’atmosphère. Ils sont abondants dans le Québec subarctique et ils jouent un rôle important à l’échelle de la planète. Dans certaines régions, les lacs de thermokarst se transforment rapidement et deviennent plus grands et plus profonds. L’objectif de cette étude était d’améliorer la compréhension et d’évaluer quelles variables sont déterminantes pour la dynamique de l’oxygène dans ces lacs. C’est pourquoi j’ai examiné les possibles changements futurs de la dynamique de l’oxygène dans ces lacs dans un contexte de réchauffement climatique. Une grande variété de méthodes ont été utilisées afin de réaliser cette recherche, dont des analyses in situ et en laboratoire, ainsi que la modélisation. Des capteurs automatisés déployés dans cinq lacs ont mesuré l’oxygène, la conductivité et la température de la colonne d’eau en continu de l’été 2012 jusqu’à l’été 2015, à des intervalles compris entre 10 à 60 minutes. Des analyses en laboratoire ont permis de déterminer la respiration et les taux de production bactériens, les variables géochimiques limnologiques, ainsi que la distribution de la production bactérienne entre les différentes fractions de taille des communautés. La température de l’eau et les concentrations d’oxygène dissous d’un lac de thermokarst ont été modélisées avec des données du passé récent (1971) au climat futur (2095), en utilisant un scénario modéré (RCP 4.5) et un scénario plus extrême (RCP 8.5) de réchauffement climatique. Cette recherche doctorale a mis en évidence les conditions anoxiques fréquentes et persistantes présentes dans de nombreux lacs de thermokarst. Aussi, ces lacs sont stratifiés pendant l’hiver comme des concentrations élevées d’ions s’accumulent dans leurs hypolimnions à cause de la formation du couvert de glace (cryoconcentration) et de la libération des ions avec la respiration bactérienne. Les différences de température contribuent également à la stabilité de la stratification. La dynamique de mélange des lacs de thermokarst étudiés était contrastée : la colonne d’eau de certains lacs se mélangeait entièrement deux fois par année, d’autres lacs se mélangeaient qu’une seule fois en automne, alors que certains lacs ne se mélangeaient jamais entièrement. Les populations bactériennes étaient abondantes et très actives, avec des taux respiratoires comparables à ceux mesurés dans des écosystèmes méso-eutrophes ou eutrophes des zones tempérées de l’hémisphère nord. L’érosion des matériaux contenus dans le sol des tourbières pergélisolées procure un substrat riche en carbone et en éléments nutritifs aux populations bactériennes, et ils constituent des habitats propices à la colonisation par des populations de bactéries associées aux particules. Le modèle de la concentration d’oxygène dissous dans un lac a révélé que le réchauffement des températures de l’air pourrait amincir le couvert de glace et diminuer sa durée, intensifiant le transfert de l’oxygène atmosphérique vers les eaux de surface. Ainsi, la concentration en oxygène dissous dans la colonne d’eau de ce lac augmenterait et les périodes de conditions anoxiques pourraient devenir plus courtes. Finalement, cette thèse doctorale insiste sur le rôle des lacs de thermokarst comme des réacteurs biogéochimiques pour la dégradation du carbone organique, qui était retenu dans les sols gelés, en gaz à effet de serre libérés dans l’atmosphère. L’oxygène est un indicateur sensible du mélange de la colonne d’eau et de la dynamique chimique des lacs, en plus d’être une variable clé des processus métaboliques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La catalyse joue un rôle essentiel dans de nombreuses applications industrielles telles que les industries pétrochimique et biochimique, ainsi que dans la production de polymères et pour la protection de l’environnement. La conception et la fabrication de catalyseurs efficaces et rentables est une étape importante pour résoudre un certain nombre de problèmes des nouvelles technologies de conversion chimique et de stockage de l’énergie. L’objectif de cette thèse est le développement de voies de synthèse efficaces et simples pour fabriquer des catalyseurs performants à base de métaux non nobles et d’examiner les aspects fondamentaux concernant la relation entre structure/composition et performance catalytique, notamment dans des processus liés à la production et au stockage de l’hydrogène. Dans un premier temps, une série d’oxydes métalliques mixtes (Cu/CeO2, CuFe/CeO2, CuCo/CeO2, CuFe2O4, NiFe2O4) nanostructurés et poreux ont été synthétisés grâce à une méthode améliorée de nanocasting. Les matériaux Cu/CeO2 obtenus, dont la composition et la structure poreuse peuvent être contrôlées, ont ensuite été testés pour l’oxydation préférentielle du CO dans un flux d’hydrogène dans le but d’obtenir un combustible hydrogène de haute pureté. Les catalyseurs synthétisés présentent une activité et une sélectivité élevées lors de l’oxydation sélective du CO en CO2. Concernant la question du stockage d’hydrogène, une voie de synthèse a été trouvée pour le composét mixte CuO-NiO, démontrant une excellente performance catalytique comparable aux catalyseurs à base de métaux nobles pour la production d’hydrogène à partir de l’ammoniaborane (aussi appelé borazane). L’activité catalytique du catalyseur étudié dans cette réaction est fortement influencée par la nature des précurseurs métalliques, la composition et la température de traitement thermique utilisées pour la préparation du catalyseur. Enfin, des catalyseurs de Cu-Ni supportés sur silice colloïdale ou sur des particules de carbone, ayant une composition et une taille variable, ont été synthétisés par un simple procédé d’imprégnation. Les catalyseurs supportés sur carbone sont stables et très actifs à la fois dans l’hydrolyse du borazane et la décomposition de l’hydrazine aqueuse pour la production d’hydrogène. Il a été démontré qu’un catalyseur optimal peut être obtenu par le contrôle de l’effet bi-métallique, l’interaction métal-support, et la taille des particules de métal.